University of California, Riverside

Earth Sciences

Department of Earth Sciences



Earthquake Processes & Geophysics


We are a growing program focused on all aspects of the earthquake problem. We study the physics of shallow and deep earthquakes, the earthquake cycle, the mechanics of faulting, structures and processes in the deep Earth, the geological record of earthquakes, and the ground deformation associated with faulting.

Our specific areas of expertise and interest include: modeling dynamic earthquake ruptures and tsunami; studying continental deformation through space geodesy; simulating fault system behavior; neotectonics and geomorphology; earthquake source seismology; investigating Earth structure and composition; and  investigating the mechanics of earthquakes experimentally.

 

Dynamic rupture simulationEarthquake rupture, slip and tsunami modeling

We are interested in understanding the physics of the earthquake process. Active research questions include: “Why do some earthquakes become large, while others remain small?” “What geometrical and structural features control the propagation of earthquake rupture and slip?” “What aspects of the seismic source control the generation of strong ground motion?” We also investigate the connection between faulting, seafloor deformation, and the generation and propagation of tsunamis. Our primary tools are numerical/computer models of the dynamic rupture process, including the use of supercomputers and advanced visualization techniques.

Faculty and researchers involved: Oglesby, Kyriakopoulos, Douilly

 

InSAR data of the 2014 South Napa earthquakeSpace geodesy and continental deformation

Space geodesy is the study of the shape and movement of the Earth’s surface using satellite data. By using techniques such as InSAR and GPS to measure these movements and therefore the deformation of the Earth's surface, we aim to learn more about processes that occur in the crust. These include earthquakes, the bending of the crust and loading of faults by plate tectonics, slow movements of faults ('fault creep'), and human activities such as geothermal power production.

Faculty and researchers involved: Funning, Kyriakopoulos

 

California earthquake simulationFault system simulation

In order to better understand the behavior of large and geometrically complex fault systems, such as the plate boundary fault system in California, we have developed an 'earthquake simulator' – a computer model that can simulate hundreds of thousands of years of fault interactions, using realistic, quasi-dynamic physics. This leverages our previous work on the rate- and state-dependent representation of fault constitutive properties, modeling of seismicity, aftershocks and earthquake triggering, and inverse models that use earthquake rates to map stress changes in space and time. We are currently working on extending these models to study induced seismicity – i.e. earthquakes that are influenced by human activity.

Faculty involved: Dieterich

 

Neotectonics and geomorphology

Southern California is a natural laboratory for the studying interactions between faulting behavior and the landscape. Using a variety of techniques, including geological fieldwork, LiDAR, structure from motion and terrain analysis, we aim to better understand the long-term geological hazards associated with earthquakes and other related phenomena (such as landslides and debris flows). We also gain insights into these phenomena through comparisons with similar plate boundary systems, such as the Alpine Fault in New Zealand.

Faculty involved: Barth

 

Earthquake source seismology

Our goal is to understand the physics of earthquakes and fault slip, using seismology as a tool. We investigate a wide spectrum of fault slip behavior including slow earthquakes, tremor, low frequency earthquakes etc. In addition, we image rupture propagation of large, damaging earthquakes to investigate their source properties, slip dynamics and associated hazards. Novel seismic array techniques are developed and cutting edge existing techniques are improved to advance our understanding of earthquakes, faults and related structures.

Faculty involved: Ghosh

 

Earth structure and composition

We are interested in the structure and composition of Earth, including the crust, and the upper and lower mantle. Faculty combine geochemical analytical facilities, land and oceanographic fieldwork with geophysical computing facilities and seismic experiments to probe Earth's interior, characterizing mantle structures and their influence on surface features, volcanism, geodynamics and tectonic evolution.

Faculty involved: Ford, Brounce

 

Experimental investigation of earthquake mechanics

A particular focus of this group has been the physics of deep earthquakes and the anticrack mechanism that enables them, with subsequent extension to investigation of dehydration embrittlement of serpentinized peridotite and its applications to intermediate-depth earthquakes. More recently, the combination of the high-pressure faulting mechanism and the results of high-speed friction experiments have led to the hypothesis that all earthquakes, including shallow ones, are lubricated by sliding on nanocrystalline products of phase transformation. We are currently testing that hypothesis.

Faculty involved: Green

More Information

General Campus Information

University of California, Riverside
900 University Ave.
Riverside, CA 92521
Tel: (951) 827-1012

UCR LibrariesCampus Status
Career OpportunitiesDiversity
Visit UCRMaps and Directions

Earth Sciences Information

Department of Earth Sciences
Geology Building

Tel: (951) 827-3434
Fax: (951) 827-4324
E-mail: john.herring@ucr.edu

Footer